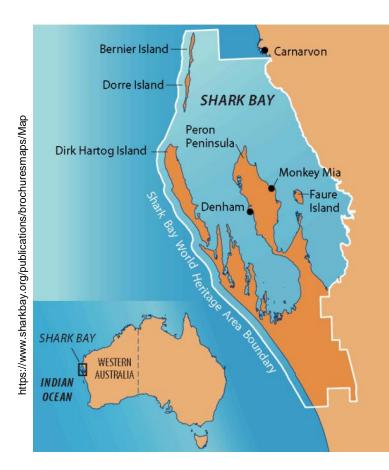
The 1921 Shark Bay Tropical Cyclone: Understanding the Extreme Storm Surge and its Implications

Dr Joanna Aldridge,

Climate Risk Manager, Munich Re Griffith Centre for Coastal Management, Griffith University School of Geosciences, University of Sydney Dr Joseph Christensen, Asia Research Centre, Murdoch University A/Prof Adam Switzer, Earth Observatory of Singapore Nanyang Technological University David Taylor and Holly Watson, Baird Australia

An autonomous institute of Nanyang Technological University



https://www.sharkbayvisit.com.au/top-10

Overview

- Motivation
 - About Shark Bay
- Historical Evidence
- Modelling
- Implications for Risk Management

Motivation - Paleoreconstruction

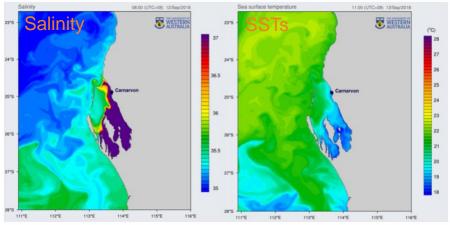
- Combine multidisciplinary knowledge to construct multiple lines of evidence for risk
- Uncover expanded data source to test our assumptions
- Explore the possible beyond known datasets

Shark Bay

World Heritage Area: world's most diverse seagrass assemblage

- Dugongs, dolphins, turtles, stromatolites
- Tourism
- Commercial fishery

Already threatened by rising SSTs


State Library of WA

Physical Environment

- Shallow bathymetry with N-S orientation
- SSTs and salinity affected by the ecosystem
- Tides: mixed diurnal and semi-diurnal
- Extensive coastal plain with sand ridges

The University of Sydney

Source: WAMSI

Shark Bay Tropical Cyclones: What We Already Know

Shark Bay (26° S) has marginal exposure to TCs

Paleo Evidence: Severe TC frequency of 190 – 270 years over the Holocene, based on parallel shell ridges (Nott 2011).

Recent Events: TC Hazel (1979), TC Herbie (1988) Storm surge > 2 m at Denham

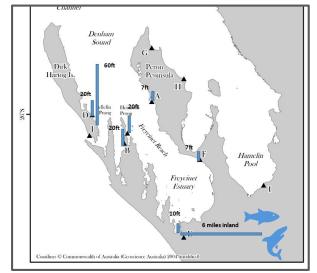
1921 TC track: BOM archive records a min Pc of 989 hPa
 ~ Cat 1 - 2

But was it?

1921 Tropical Cyclone: Further Historical Evidence

Coincided with the 1921 Australian Census collection.

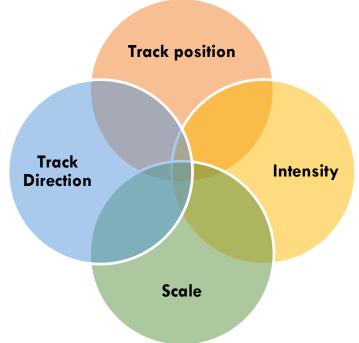
Observed Inundation:


- 2.1 -3.0 m at Denham
- 6.1 m at Useless Inlet
- 2.1 m at the southern end of Freycinet Reach

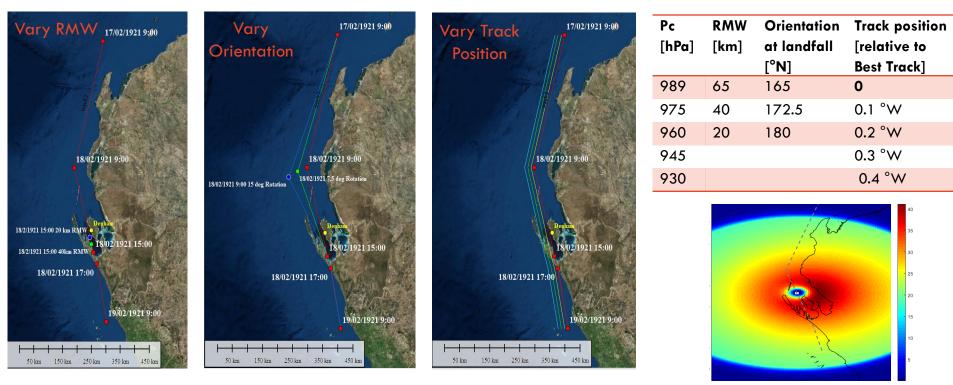
Overland flow left sharks and fish stranded up to 10 km inland. Ship groundings, flooding, and altered coastal geomorphology.

Long Lasting Impacts:

- Saltwater inundation of Denham's freshwater wells
- Pearling industry in decline
- Seagrass ecosystem



1921 Tropical Cyclone: Inverse Modelling Problem


Aims: Given the sensitivity of storm surge to TC track and parameters:

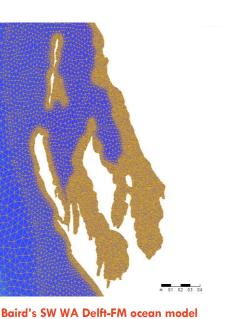
- Can we <u>replicate</u> the historical observations of elevated water levels and inundation?
- What is the <u>likely set of TC track and</u> parameters that resulted in the historical inundation observations?
- What does this tell us about the <u>likely</u> <u>intensity/category</u> of the 1921 TC?

1921 TC: Numerical Modelling Approach

225 model runs varying the BOM Best Track using cyclonic parametric wind speed/pressure model

1921 TC: Holland (2010) wind field

1921 TC: Ocean Modelling Set-Up


Delft-FM SW WA Australia ocean model (Baird)

- Unstructured 2D-vertical hydrodynamic model
- Resolution: max 1 km bt -10 m contour and coast
- **Bathymetry:** Aust Navy Electronic Navy Charts.
- **Tidal Boundaries:** TOPEX-8 tidal constituents
- Tidal Calibration: 9 Standard Ports over 1 yr
 MAE = <0.02 m
- Storm Surge Validation: 35 historical TC storm surge events over Australian region, replicating measured peak tidal residuals

Linear fit = 0.9957 ($R^2 = 0.96$)

Ocean waves not considered (yet)

Burston, J.M., Taylor, D.R., Dent, J.M. & Churchill, J.W. 2017. Australia-wide Tropical Cyclone Multi-hazard Risk Assessment. Proceedings of the Australasian Coasts and Ports Conference, June 2017. Cairns, Australia.

1921 TC: Numerical Modelling Results

BOM Best Track does not replicate observed storm surge

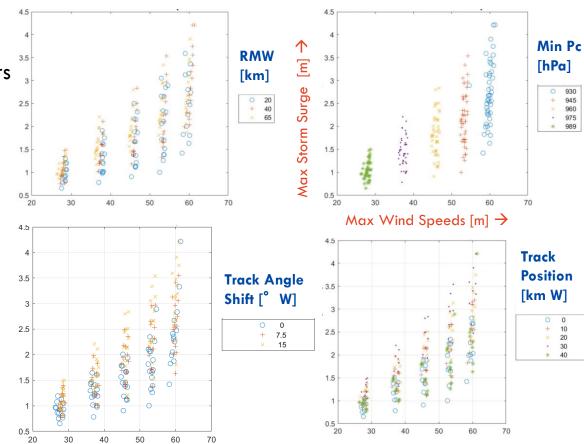
Peak Storm Tide [m AHD]

Location	BOM Best Track	Observation		
Denham	0.86 m	2.1 -3.0 m		
Point of Landfall	1.28 m	~2.1 m		

1921 TC BOM Best Track: 989 hPa?

1921 TC: Numerical Modelling Results – Simulation Set

<u>Marked variability</u> in peak storm surge in response to TC parameters


Denham

Among 225 ensemble members:

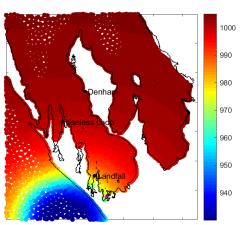
- ranges from 0.6 to 4.3 m

Even for same Pc (eg 930 hPa):

Range is 1.4 to 4.3 m

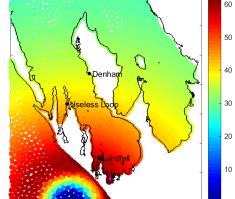
The University of Sydney

1921 TC: Numerical Modelling Results – Simulation Set

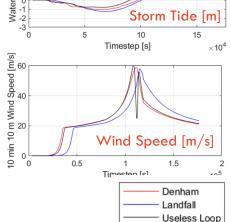

Of the 225 ensemble set:

- 29 satisfy the constraints of the historical observations at Denham
 - peak winds from NE and >33 m/s, peak water level at spring tide > 2.1 m
- 5 satisfy the additional constraints of peak storm tide > 4 m at Useless Loop and at the south end of Shark Bay

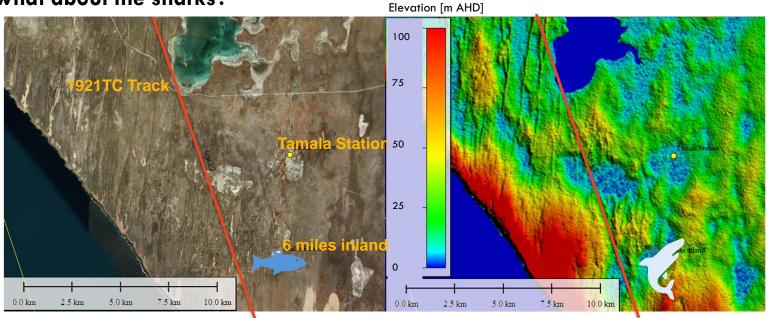
1921 TC was likely a Cat 4 to marginal Cat 5


			Peak Surge (m)							
RL	JNID Pc	(hPa) Shift (km)	Rotation (deg	N) RMW (km)	Denham	Shark Bay	Useless Loop			
	115	930	40	15	20	3.3	4.1	5.2		
	164	945	20	15	30	3.1	4.2	4.3		
	165	930	20	15	30	3.7	5.0	5.0		
	180	930	20	7.5	30	3.2	4.5	4.3		
	195	930	20	0	40	2.5	4.2	6.5		

1921 TC: Numerical Modelling Results – Run 180


Central Pressure [hPa]

10-min 10 m Wind Speed [m/s]


Peak Storm Tide [m AHD]

Time Series Profiles

1921 TC: Overland Flow

So what about the sharks?

Satellite imagery at STRM topography (30 m resolution) surrounding Tamala Station.

Contextualising the Risk

Current Planning Levels for Denham:

- 100 yr ARI for existing development:
 3.6 m AHD (incl 0.9 m SLR) = 2.7 m AHD (ex SLR)
- 500 yr ARI for new freehold development:
 4.2 m AHD (incl 0.9 m SLR)) = 3.3 m AHD (ex SLR)

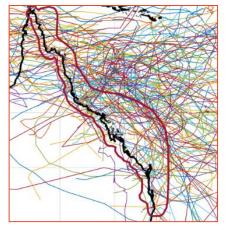
1921 TC: 3.0 m AHD storm tide

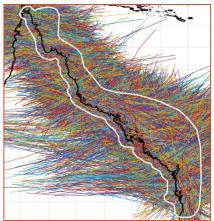
- Is the planning level underestimated?
- Is the emergency evacuation level sufficient?

Shark Bay Ecosystem – Environmental Management Challenge

- Threat to seagrass assemblage, stromatolites and marine mammals already threatened by rising SLR and SSTs

Shire of Shark Bay, 2012. Local Planning Scheme No3 – District Zoning Scheme. M.P. Rogers and Associates. 2014. Denham Inundation Levels Storm Surge Modelling Report. On behalf of: Shire of Shark Bay. R558 Rev0. December 2014.


Denham is quite flat! Image - WACoast: Gozzard (2012)


Implications for Hazard Models

Stochastic hazard models are built on underlying distribution of the climatology typically over the satellite era:

- Genesis locations
- Track locations, forward speed and direction
- Intensity and scale parameters
- 1. What does this mean on the margins?
- 2. Can we test by expanding the TC climatology underpinning the synthetic tracks?

Coral Sea – 54 years BOM tracks

10 000 yr Monte Carlo tracks Page 17

Take Aways

- Multidisciplinary paleoclimate studies add value to current risk understanding
- 2. Do we have sufficient appreciation of our current risk?
- 3. How many more Cat 5s can we uncover? In Australia and across the globe.

